Epigenetic Mechanisms in the Control System of the Kidney Function in Norm
Abstract
Keywords
Full Text:
PDFReferences
Adli M., Parlak M., Li Y., El-Dahr S. Epigenetic States of Nephron Progenitors and Epithelial Differentiation. J Cell Biochem. 2015;116(6): 893–902. doi: 10.1002/jcb.25048
Hilliard S.A, El-Dahr S.S. Epigenetics mechanisms in renal development. Pediatr Nephrol. 2016;31(7):1055–1060. doi: 10.1007/s00467-015-3228-x
Liu H., Chen S., Yao X., Li Y., Chen C.-H., Liu J., Saifudeen Z., El-Dahr S.S. Histone deacetylases 1 and 2 regulate the transcriptional programs of nephron progenitors and renal vesicles.Development. 2018;145,dev153619. doi: 10.1242/dev.153619
Martini A.G., Danser A.H.J. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev, 2017;24:231–242. doi: 10.1007/s40292-017-0212-5
Stocher D.P., Klein C.P., Saccomori A.B., August P.M., Martins N.C., Couto P.R.G, Hagen M.E.K., Mattй C. Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring’s brain. British Journal of Nutrition, 2018;119: 1003–1011. doi:10.1017/S0007114518000235
Hilliard S.A., El-Dah S.S. Epigenetics of Renal Development and Disease. Yale Journal of Biology and Medicine,2016;89(4):565-573. PMC5168832
Mugatroyd C., Wu Y., Bockmuhl Y., Spengler D. The Janus face of DNA methylation in aging. Aging,2010;2(2):107-110. doi: 10.18632/aging.100124
Greenwood M.P., Greenwood M., Romanova E.V., Mecawi A.S., Paterson A., Sarenac O., Japundzic-Zigon N., Antunes-Rodrigues J., Paton J.F.R., Sweedler J.V., Murphy D. The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiology of Aging, 2018; 65:178-191. doi.org/10.1016/j.neurobiolaging.2018.01.008
Ho J., Kreidberg J.A. The Long and Short of MicroRNAs in the Kidney. J Am Soc Nephrol,2012;23: 400–404. doi: 10.1681/ASN.2011080797
Trionfini P., Benigni A. MicroRNAs as Master Regulators of Glomerular Function in Health and Disease. J Am Soc Nephrol,2017;28:1686–1696. doi: https://doi.org/10.1681/ASN.2016101117
Tain Y.-L., Huang L.-T., Hsu C.-N. Developmental Programming of Adult Disease: Reprogramming by Melatonin? Int. J. Mol. Sci., 2017; 18: 426. doi: 10.3390/ijms18020426
Lay A.C., Coward R.J.M. The Evolving Importance of Insulin Signaling in Podocyte Health and Disease. Front. Endocrinol,2018;9:693. doi: 10.3389/fendo.2018.00693
Shiels P.G., McGuinness D., Eriksson M., Kooman J.P., Stenvinkel P. The role of epigenetics in renal ageing. Nature Reviews Nephrology, 2017;13:471-482. doi: 10.1038/nrneph.2017.78
Morigi M., Perico L., Benigni A. Sirtuins in Renal Health and Disease. Journal of the American Society of Nephrology, 2018;29(7):1799-1809. doi: 10.1681/ASN.2017111218
Azzi A., Dallmann R., Casserly A., Rehrauer H., Patrignani A., Maier B., Kramer A., Brown S.A. Circadian behavior is light-reprogrammed by plastic DNA methylation, Nature Neuroscience,2014;17:377–382. Doi: 10.1038/nn.3651
Zhang D., Yu Z., Cruz P., Kong Q., Li S., Kone B.C Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney International, 2009; 75:260–267. doi:10.1038/ki.2008.475
Wei Q., Bhatt K., He H.-Z., Mi Q.-S., Haase V.H., Dong Z. Targeted Deletion of Dicer from Proximal Tubules Protects against Renal Ischemia-Reperfusion Injury. J Am Soc Nephrol, 2010;21:756–761. doi: 10.1681/ASN.2009070718
Chou Y.-H., Huang T.-M., Chu T.-S. Novel insights into acute kidney injury–chronic kidney disease continuum and the role of renin–angiotensin system. Journal of the Formosan Medical Association,2017;116:652e659. doi: 10.1016/j.jfma.2017.04.026
MacManes M.D. Severe acute dehydration in a desert rodent elicits a transcriptional response that effectively prevents kidney injury. Am J Physiol Renal Physiol, 2017; 313:F262–F272. doi: 10.1152/ajprenal.00067.2017
Taub M. Gene Level Regulation of Na,K-ATPase in the Renal Proximal Tubule Is Controlled by Two Independent but Interacting Regulatory Mechanisms Involving Salt Inducible Kinase 1 and CREB-Regulated Transcriptional Coactivators. Int. J. Mol. Sci, 2018;19:2086. doi: 10.3390/ijms19072086
Gildea J.J., Xu P., Kemp B.A., Carlson J,M., Tran HT, Bigler Wang D, et al. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS ONE, 2018;13(4): e0189464. doi: 10.1371/journal.pone.0189464
Ivy J.R., Evans L.C., Moorhouse R., Richardson RV, Al-Dujaili E.A.S., Flatman P.W., Kenyon C.J., Chapman K.E., Bailey M.A. Renal and Blood Pressure Response to a High-Salt Diet in Mice With Reduced Global Expression of the Glucocorticoid Receptor. Front. Physiol, 2018;9:848. doi: 10.3389/fphys.2018.00848
Takeda Y., Demura M., Wang F., Karashima S., Yoneda T., Kometani M., Hashimoto A., Aono D., Horike S., Meguro-Horike M., Yamagishi M., Takeda Y. Epigenetic Regulation of Aldosterone Synthase Gene by Sodium and Angiotensin II. J Am Heart Assoc, 2018;7:e008281. Doi: 10.1161/JAHA.117.008281
Hua J.X., Ting Z.J., Chan C.H. Ion channels/transporters as epigenetic regulators? A microRNA perspective. Science china Life Sciences,2012;55(9):753–760. doi: 10.1007/s11427-012-4369-9
Mladinov D., Liu Y., Mattson D.L., Liang M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase b1. Nucleic Acids Research, 2013:41, No. 2 1273–1283. doi: 10.1093/nar/gks1228.
Huang W., Liu H., Wang T., Zhang T., Kuang J., Luo Y., Chung S.S.M., Yuan L., Yang J.Y. Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Research, 2011;39(2):475–485. doi: 10.1093/nar/gkq818
Luo Y., Liu Y., Liu M., Wei J., Zhang Y., Hou J., Huang W., Wang T., Li X., He Y., Ding F., Yuan L., Cai J., Zheng F., Yang J.Y. Sfmbt2 10th intron-hosted miR-466(a/e)-3p are important epigenetic regulators of Nfat5 signaling, osmoregulation and urine concentration in mice. Biochimica et Biophysica Acta, 2014;1839:97–106. doi: 10.1016/j.bbagrm.2013.12.005
Chandrasekaran K., Karolina D.S., Sepramaniam S., Armugam A., Wintour E.M., Bertram J.F., Jeyaseelan K. Role of microRNAs in kidney homeostasis and disease. Kidney International,2012;81:617–627. doi: 10.1038/ki.2011.448
Ichii O., Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol,2018;31(1):23–34. doi: 10.1293/tox.2017-0051
Thomas M.J., Fraser D.J., Bowen T.Biogenesis, Stabilization, and Transport of microRNAs in Kidney Health and Disease. Non-coding RNA,2018;4(4):E30. doi: 10.3390/ncrna4040030
Hirohama D., Ayuzawa N., Ueda K., Nishimoto M., Kawarazaki W., Watanabe A., Shimosawa T., Marumo T., Shibata S., Fujita T. Aldosterone Is Essential for Angiotensin II-Induced Upregulation of Pendrin. J Am Soc Nephrol, 2018;29:57–68. doi: 10.1681/ASN.2017030243
Lu C.C., Ma K.L., Ruan X.Z., Liu B.C. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. Int. J. Med. Sci.,2018;15(8):816-822. doi: 10.7150/ijms.25543
Martini A.G., Xa L.K., Lacombe M.-J., Blanchet-Cohen A., Mercure C., Haibe-Kains B., Friesema E.C.H.., van den Meiracker A.H., Gross K.W., Azizi M., Corvol P., Nguyen G., Reudelhuber T.L., Danser A.H.J. Transcriptome Analysis of Human Reninomas as an Approach to Understanding Juxtaglomerular Cell Biology. Hypertension. 2017;69:1145-1155. doi: 10.1161/HYPERTENSIONAHA.117.09179
Sequeira-Lopez M.L.S., Weatherford E.T., Borges G.R., Monteagudo M.C., Pentz E.C., Harfe B.D., Carretero O., Sigmund C.D., Gomez R.A. The MicroRNA-Processing Enzyme Dicer Maintains Juxtaglomerular Cells. J Am Soc Nephrol,2010;21:460–467. doi: 10.1681/ASN.2009090964
Marumo T., Yagi S., Kawarazaki W., Nishimoto M., Ayuzawa N., Watanabe A., Ueda K., Hirahashi J., Hishikawa K., Sakurai H., Shiota K., Fujita T. Diabetes Induces Aberrant DNA Methylation in the Proximal Tubules of the Kidney. J Am Soc Nephrol,2015;26:2388–2397. doi: 10.1681/ASN.2014070665
Martini A.G., Danser A.H.J. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev,2017;24:231–242. doi: 10.1007/s40292-017-0212-5
Hohl M., Wagner M., Reil J.-C., Mьller S.-A., Tauchnitz M., Zimmer A.M., Lehmann L.H., Thiel G., Bцhm M., Backs J., Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest.2013;123(3):1359–1370. doi: 10.1172/JCI61084
Sergeeva I.A., Hooijkaas I.B., Ruijter J.M., van der Made I., de Groot N.E., van de Werken H.J.G., Creemers E.E., Christoffels V.M. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development,2016;143:2135-2146. doi: 10.1242/dev.132019
Li Y., Cai X., Guan Y., Wang L., Wang S., Li Y. et al. Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation. PLoS ONE,2016;11(2):e0148482. doi: 10.1371/journal.pone.0148482
Hayashi M., Arima H., Goto M., Banno R., Watanabe M., Sato I., Nagasaki H., Oiso Y. Vasopressin gene transcription increases in response to decreases in plasma volume, but not to increases in plasma osmolality, in chronically dehydrated rats. Am J Physiol Endocrinol Metab,2006;290:E213–E217. doi: 10.1152/ajpendo.00158.2005
Greenwood M.P., Greenwood M., Gillard B.T., Loh S.Y., Paton J.F.R., Murphy D. Epigenetic Control of the Vasopressin Promoter Explains Physiological Ability to Regulate Vasopressin Transcription in Dehydration and Salt Loading States in the Rat. Journal of Neuroendocrinology, 2016;28(4):10.1111/jne.12371. doi: 10.1111/jne.12371
Augera C.J., Cossa D., Augera A.P., Forbes-Lorman R.M. Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. PNAS,2011;108(10):4242–4247. doi: 10.1073/pnas.1100314108
Park E.-J., Kwon T.H. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press,2015;13:1-6. doi: 10.5049/EBP.2015.13.1.1
Jung H.J., Kwon T.-H. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol,2016,311:F1318–F1328. doi: 10.1152/ajprenal.00485.2016
Bourque C.W. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519-531. doi: 10.1038/nrn2400
Thornton S.N. Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav. 2010;100(1):15-21. doi: 10.1016/j.physbeh.2010.02.026
Greenwood M.P., Mecawi A.S.,Hoe S.Z., Mustafa M.R., Johnson K.R., Al-Mahmoud G.A., Elias L.L.K., Paton J.F.R., Antunes-Rodrigues J., Gainer H., Murphy D., Hindmarch C.C.T. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol. 2015; 308: R559–R568. doi: 10.1152/ajpregu.00444.2014
Park E.-J., Kwon T.-H. A Minireview on Vasopressin-regulated Aquaporin-2 in Kidney Collecting Duct Cells. Electrolyte Blood Press. 2015; 13(1): 1–6. doi: 10.5049/EBP.2015.13.1.1
Zhuo J.L., Li X.C. New Insights and Perspectives on Intrarenal Renin-Angiotensin System: Focus on Intracrine/Intracellular Angiotensin II. Peptides. 2011; 32(7): 1551–1565. doi: 10.1016/j.peptides.2011.05.012
Kurtz A. Control of renin synthesis and secretion. Am J Hypertens. 2012;25(8):839-847. doi: 10.1038/ajh.2011.246
Gomez R.A., Sequeira-Lopez M.L.S. Renin cells in homeostasis, regeneration and immune defence mechanisms. Nat Rev Nephrol. 2018;14(4):231-245. doi: 10.1038/nrneph.2017.186
Kuwahara К., Nakao К. Regulation and signifcance of atrial and brain natriuretic peptides as cardiac hormones. Endocrine Journal 2010;57(7):555-565. PMID: 20571250
Nakagawa Y., Nishikimi T., Kuwahara K.Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides. 2019;111:18-25. doi: 10.1016/j.peptides.2018.05.012
Kondo N., Arima H., Banno R., Kuwahara S., Sato I., Oiso Y. Osmoregulation of vasopressin release and gene transcription under acute and chronic hypovolemia in rats. Am J Physiol Endocrinol Metab. 2004; 286(3): E337–E346. PMID:14613925. doi: 10.1152/ajpendo.00328.2003
Hindmarch C.C.T., Murphy D. The Transcriptome and the Hypothalamo Neurohypophyseal System. Pediatric Neuroendocrinology. Endocr Dev. 2010;17:1–10. doi: 10.1159/000262523
Hindmarch C., Yao S., Beighton G., Paton J., Murphy D. A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. PNAS, 2006;103(5): 1609–1614. PMID:16432224. PMCID:PMC1360533. doi: 10.1073/pnas.0507450103
Mitchell N.C., Gilman T.L., Daws L.C., Toney G.M. High Salt Intake Enhances Swim Stress-Induced PVN Vasopressin Cell Activation and Active Stress Coping Psychoneuroendocrinology. 2018;93:29-38. doi: 10.1016/j.psyneuen.2018.04.003
Yue C., Mutsuga N., Sugimura Y., Verbalis J., Gainer H. Differential Kinetics of Oxytocin and Vasopressin Heteronuclear RNA Expression in the Rat Supraoptic Nucleus in Response to Chronic Salt Loading In vivo. Journal of Neuroendocrinology. 2008;20:227–232. PMID:18088359. doi: 10.1111/j.1365-2826.2007.01640.x
Hindmarch C.C., Murphy D. The transcriptome and the hypothalamo-neurohypophyseal system. Endocr Dev. 2010;17:1-10. doi: 10.1159/000262523
Qiu J., Yao S., Hindmarch C., Antunes V., Paton J., Murphy D. Transcription Factor Expression in the HypothalamoNeurohypophyseal System of the Dehydrated Rat: Upregulation of Gonadotrophin Inducible Transcription Factor 1 mRNA Is Mediated by cAMP-Dependent Protein Kinase A. J. Neurosci.2007;27(9):2196–2203. doi: 10.1523/JNEUROSCI.5420-06.2007
Johnson K.R., Hindmarch C.C.T., Salinas Y.D., Shi Y., Greenwood M., Hoe S.Z., et al. (2015) A RNASeq Analysis of the Rat Supraoptic Nucleus Transcriptome: Effects of Salt Loading on Gene Expression. PLoS ONE. 2015;10(4): e0124523. doi: 10.1371/journal.pone.0124523
Ponzio T.A., Fields R.L., Rashid O.M., Salinas Y.D., Lubelski D., Gainer H. Cell-Type Specific Expression of the Vasopressin Gene Analyzed by AAV Mediated Gene Delivery of Promoter Deletion Constructs into the Rat SON In Vivo. PloS One. 2012;7(11):e48860. doi: 10.1371/journal.pone.0048860
Kawasaki M., Ponzio T.A., Yue C., Fields R.L., Gainer H. Neurotransmitter regulation of c-fos and vasopressin gene expression in the rat supraoptic nucleus. Exp Neurol. 2009; 219(1): 212–222. doi: 10.1016/j.expneurol.2009.05.019
Stewart L., Hindmarch C.C.T., Qiu J., Tung Y.-C. L., Yeo G.S.H., Murphy D. Hypothalamic Transcriptome Plasticity in Two Rodent Species Reveals Divergent Differential Gene Expression But Conserved Pathways. Journal of Neuroendocrinology. 2011; 23:177–185. PMID:21070396. doi: 10.1111/j.1365-2826.2010.02093.x
Archer T. Epigenetic Changes Induced by Exercise. Journal of Reward Defciency Syndrome. 2015;1(2):71-74
Loh S.-Y., Jahans-Price T., Greenwood M.P., Greenwood M., Hoe S.-Z., Konopacka A., Campbell C., Murphy D., Hindmarch C.C.T. Unsupervised Network Analysis of the Plastic Supraoptic Nucleus Transcriptome Predicts Caprin2 Regulatory Interactions. eNeuro.2017;4(6). pii: ENEURO.0243-17.2017. doi: 10.1523/ENEURO.0243-17.2017
Konopacka A., Greenwood M., Loh S.-Y., Paton J., Murphy D. RNA binding protein Caprin-2 is a pivotal regulator of the central osmotic defense response. eLife 2015;4:e09656. doi: 10.7554/eLife.09656. PMID:26559902.
Konopacka A., Qiu J., Yao S.T., Greenwood M.P., Greenwood M., Lancaster T., Inoue W., Mecawi A.S., Vechiato F.M., de Lima J.B., Coletti R., Hoe S.Z., Martin A., Lee J., Joseph M., Hindmarch C., Paton J., Antunes-Rodrigues J., Bains J., Murphy D. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2. J Neurosci.2015;35(13):5144-5155. doi: 10.1523/JNEUROSCI.4121-14.2015
Knepper M.A., Kwon T.-H., Nielsen S. Molecular Physiology of Water Balance. N Engl J Med. 2015; 372(14): 1349–1358. doi: 10.1056/NEJMra1404726.
Qian Q. Salt, water and nephron: Mechanisms of action and link to hypertension and chronic kidney disease. Nephrology (Carlton). 2018; 23(Suppl Suppl 4): 44–49. doi: 10.1111/nep.13465. PMID: 30298656.
Sanghi A., Zaringhalam M., Corcoran C.C., Saeed F., Hoffert J.D., Sandoval P., Pisitkun T., Knepper M.A. A knowledge base of vasopressin actions in the kidney. Am J Physiol Renal Physiol. 2014;307: F747–F755. doi: 10.1152/ajprenal.00012.2014.
Roos K.P., Bugaj V., Mironova E., Stockand J.D., Ramkumar N., Rees S., Kohan D.E.Adenylyl Cyclase VI Mediates Vasopressin-Stimulated ENaC Activity. J Am Soc Nephrol. 2013; 24(2): 218–227. doi:10.1681/ASN.2012050449. PMCID: PMC3559481. PMID: 23264685.
Wilson J.L.L., Miranda C.A., Knepper M.A. Vasopressin and the Regulation of Aquaporin-2. Clin Exp Nephrol. 2013; 17(6): 10.1007/s10157-013-0789-5. doi:10.1007/s10157-013-0789-5. PMID: 23584881.
Yua M.-J., Miller R.L., Uawithya P., Rinschen M.M., Khositseth S., Braucht D.W.W., Chou C.L., Pisitkun T., Nelson R.D., Knepper M.A. Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct. PNAS. 2009;106(7): 2441–2446. doi: 10.1073/pnas.0813002106
Jung H.J., Kwon T.H. Molecular mechanisms regulating aquaporin-2 in kidney collecting duct. Am J Physiol Renal Physiol. 2016; 311: F1318 –F1328. doi: 10.1152/ajprenal.00485.2016
Xiao Z., Chen L., Zhou Q., Zhang W. Dot1l deficiency leads to increased intercalated cells and upregulation of V-ATPase B1 in mice. Exp Cell Res. 2016; 344(2): 167–175. doi: 10.1016/j.yexcr.2015.09.014
Bodden C., van den Hove D., Lesch K.-P., Sachser N. Impact of varying social experiences during life history on behaviour, gene expression, and vasopressin receptor gene methylation in mice. Sci Rep. 2017; 7: 8719. doi: 10.1038/s41598-017-09292-0. PMID: 28821809
Frieling H., Bleich S., Otten J., Ro¨mer K.D., Kornhuber J., de Zwaan M., Jacoby G.E., Wilhelm J., Hillemacher T. Epigenetic Downregulation of Atrial Natriuretic Peptide but not Vasopressin mRNA Expression in Females with Eating Disorders is Related to Impulsivity. Neuropsychopharmacology. 2008;33:2605–2609. doi: 10.1038/sj.npp.1301662
Gardner D.G., Chen S., Glenn D.J., Grigsby C.L. Molecular Biology of the Natriuretic Peptide System Implications for Physiology and Hypertension. Hypertension. 2007;49:419-426. doi: 10.1161/01.HYP.0000258532.07418.fa
Ichiki T., Burnett J.C. Atrial Natriuretic Peptide. Old But New Therapeutic in Cardiovascular Diseases. Circ J. 2017; 81: 913–919. doi: 10.1253/circj.CJ-17-0499
Nakagawa Y., Nishikimi T., Kuwahara K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides. 2019;111:18-25. doi: 10.1016/j.peptides.2018.05.012. PMID:29859763
Sergeeva I.A., Christoffels V.M. Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart developmentand disease. Biochim Biophys Acta. 2013;1832(12):2403-2413. doi: 10.1016/j.bbadis.2013.07.003
Dong L., Wang H., Dong N., Zhang Ce., Xue B., Wu Q. Localization of corin and atrial natriuretic peptide expression in human renal segments. Clin Sci (Lond). 2016; 130(18): 1655–1664. doi: 10.1042/CS20160398
Pandey K.N. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics. 2018;50(11):913-928. doi: 10.1152/physiolgenomics.00083.2018
DiSalvo T.G. Epigenetic regulation in heart failure: part II DNA and chromatin. Cardiol Rev. 2015;23(6):269-281. doi: 10.1097/CRD.0000000000000074
Man J., Barnett P., Christofels V.M. Structure and function of the Nppa–Nppb cluster locus during heart development and disease. Cell Mol Life Sci. 2018;75(8):1435-1444. doi: 10.1007/s00018-017-2737-0
Pandey K.N. Guanylyl Cyclase/Atrial Natriuretic Peptide Receptor-A: Role in the Pathophysiology of Cardiovascular Regulation. Can J Physiol Pharmacol. 2011; 89(8): 557–573. doi: 10.1139/y11-054
Kumar P., Periyasamy R., Das S., Neerukonda S., Mani I., Pandey K.N. All-Trans Retinoic Acid and Sodium Butyrate Enhance Natriuretic Peptide Receptor A Gene Transcription: Role of Histone Modification. Mol Pharmacol. 2014; 85(6):946-957. doi: 10.1124/mol.114.092221
Huang L., Xi Z., Wang C, Zhang Y., Yang Z., Zhang S., Chen Y., Zuo Z. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNAmethylation. Sci Rep. 2016;6:20105. doi: 10.1038/srep20105
Ito E., Miyagawa S., Fukushima S., Yoshikawa Y., Saito S., Saito T., Harada A., Takeda M., Kashiyama N., Nakamura Y., Shiozaki M., Toda K., Sawa Y. Histone Modification Is Correlated With Reverse Left Ventricular Remodeling in Nonischemic Dilated Cardiomyopathy. Ann Thorac Surg 2017;104:1531–1539. doi: 10.1016/j.athoracsur.2017.04.046
Shen K., Tu T., Yuan Z., Yi J., Zhou Y., Liao X., Liu Q., Zhou X. DNA methylation dysregulations in valvular atrial fibrillation. Clinical Cardiology. 2017;40:686–691. doi: 10.1002/clc.22715
Hohl M., Wagner M., Reil J.-C., Müller S.A., Tauchnitz M., Zimmer A.M., Lehmann L.H., Thiel G., Böhm M., Backs J., Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest. 2013;123(3):1359–137. doi: 10.1172/JCI61084
Sergeeva I.A., Hooijkaas I.B., Ruijter J. M., van der Made I., de Groot N.E., van de Werken H.J.G., Creemers E.E. Christoffels V.M. Identification of a regulatory domain controlling the Nppa-Nppb gene cluster during heart development and stress. Development. 2016; 143(12):2135-2146. doi: 10.1242/dev.132019
Kumar P., Pandey K.N. Cooperative activation of npr1 gene transcription and expression by interaction of ets-1 and P300. Hypertension. 2009; 54(1): 172–178. doi:10.1161/HYPERTENSIONAHA.109.133033. PMID: 19487584.
Kumar P., Tripathi S., Pandey K.N. Histone Deacetylase Inhibitors Modulate the Transcriptional Regulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Gene. Interactive roles of modified histones, histone acetyltransferase, p300, and Sp1. Journal of biological chemistry. 2014; 289(10):6991-7002. doi: 10.1074/jbc.M113.511444
Chen L., Yang T., Lu D.W., Zhao H., Feng Y.L., Chen H., Chen D.Q., Vaziri N.D., Zhao Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother. 2018;101:670-681. doi: 10.1016/j.biopha.2018.02.090
Sen A., Kumar P., Garg R., Lindsey S.H., Katakam P.V.G., Bloodworth M., Pandey K.N. Transforming growth factor b1 antagonizes the transcription, expression and vascular signaling of guanylyl cyclase/natriuretic peptide receptor A – role of dEF1. FEBS Journal. 2016; 283(9):1767–1781. doi: 10.1111/febs.13701. PMID:26934489.
DOI: http://dx.doi.org/10.5281/zenodo.2662547
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 © The Author(s)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal of Education, Health and Sport formerly Journal of Health Sciences
Declaration on the original version.
Editors indicates that the main version of the magazine is to issue a "electronic".
The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.
1223 Journal of Education, Health and Sport eISSN 2391-8306 7
ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X
Archives 2011 - 2014
PBN 2011 - 2014
https://pbn.nauka.gov.pl/sedno-webapp/search?search&searchCategory=WORK&filter.inJournal=36616
POL-index 2011 - 2014
https://pbn.nauka.gov.pl/polindex-webapp/browse/journal/journal-32a319c5-a850-4f44-ba70-1418a6087655
BASE 2011 - 2014
http://elibrary.ru/contents.asp?titleid=37467
http://journal.rsw.edu.pl/index.php/JHS/issue/archive
Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska
US NLM = 101679844
101679844 - NLM Catalog Result - NCBI
https://www.ncbi.nlm.nih.gov/nlmcatalog/101679844
Find a library that holds this journal: http://worldcat.org/issn/23918306
Journal Language(s): English
PBN Poland
https://pbn.nauka.gov.pl/sedno-webapp/journals/49068
POL-index
https://pbn.nauka.gov.pl/polindex-webapp/browse/journal/journal-c39c8169-88d2-45db-9e7f-d948ce9981c4
BASE
Redaction, Publisher and Editorial Office
Instytut Kultury Fizycznej Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Institute of Physical Education Kazimierz Wielki University in Bydgoszcz, Poland 85-091 Bydgoszcz ul. Sportowa 2 www.ukw.edu.pl Copyright by Instytut Kultury Fizycznej UKW w Bydgoszczy http://ojs.ukw.edu.pl/index.php/johs Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X
The journal has been approved for inclusion in ERIH PLUS.
The ERIH PLUS listing of the journal is available at https://dbh.nsd.uib.no/publiseringskanaler/erihplus/periodical/info?id=485984
SIC Science citation index (calculated on the basis of TCI and Page Rank) 0
Russian Impact factor 0.16
Indexed in Index Copernicus Journals Master List.
http://journals.indexcopernicus.com/Journal+of+Education+Health+and+Sport,p24782242,3.html
ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 2011: 5.48
The InfoBase Index IBI Factor for the year 2015 is 3.56 in InfoBase Index.com.
Website: www.infobaseindex.com
Universal Impact Factor 1.78 for year 2012. (http://www.uifactor.org/AppliedJournals.aspx)
Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (https://pbn.nauka.gov.pl/journals/36616)
is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.
Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ) http://elibrary.ru/contents.asp?titleid=37467
Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski
(http://www1.bg.us.edu.pl/bazy/czasopisma/czasop_full.asp?id=3595)