The influence of genetic factors on the pathogenesis of hypertrophic scars and keloids

Sławomir Liberski, Daria Marczak, Arkadiusz Migdalski


Hypertrophic scars and keloids are forms of abnormal scarring, which may be the cause of somatic ailmants and, due to unfavorable aesthetic effect, also mental disorders and social problems. Given the unclear aetiology and the lack of effective treatment methods, they pose a serious challenge for modern science. The contribution of genetic factors is one of the proposed hypotheses regarding the formation of hypertrophic scars and keloids. Gene polymorphism and mutations occurring in them may interfere with the proper course of signaling pathways responsible for the subsequent stages of the wound healing process. An important role in the pathogenesis of abnormal scarring may be the TGF-B1/Smad pathway, MAPK kinase, pathway for IGF-I and its receptor, plasminogen activator inhibitor-1 and urokinase plasminogen activator, gene polymorphisms for the vitamin D receptor and the ADAM33 gene, as well as abnormal expression of suppressor genes. The effect on heat shock protein expression and type 2 hyaluronidase synthase was also shown. The explanation of the genetic basis of hypertrophic scar and keloid formation may lead to a full understanding of their pathogenesis and also have important implications in the form of therapeutic benefits resulting in the development of effective forms of treatment.


keloid; hypertrophic scar; wound healing; genes

Full Text:



Arno AI, Gauglitz GG, Barret JP, Jeschke MG. Up-to-date approach to manage keloids and hypertrophic scars: a useful guide. Burns. 2014; (40): 1255–66.

Wysocka M, Żaba R. Patogeneza oraz wybrane metody leczenia blizn przerosłych i bliznowców. Przew Lek 2007; (5): 79-86.

Wolfram D, Tzankov A, Pülzl P, Piza-Katzer H. Hypertrophic scars and keloids—a review of their pathophysiology, risk factors, and therapeutic management. Dermatologic Surgery. 2009; 171-81.

Witmanowski H, Lewandowicz E, Zieliński T, Łuczkowska M, Kruk-Jeromin J. Hypertrophic scars and keloids. Part I. Pathogenesis and pathomechanism. Post. Dermatol. Alergol. 2009; (3): 107-15.

Zielins E.R, Brett E.A, Luan A, Hu M.S, Walmsley G.G, Paik K, Senarath-Yapa K, Atashroo D.A, Wearda T, Lorenz H.P. Emerging drugs for the treatment of wound healing. Expert Opin. Emerg. Drugs. 2015; (20): 235–46.

van den Broek LJ, Limandjaja GC, Niessen FB, Gibbs S. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Exp Dermatol. 2014; 23(6): 382-6.

Hunasgi, S., Koneru, A., Vanishree, M., Shamala, R. Keloid: a case report and review of pathophysiology and differences between keloid and hypertrophic scars. J Oral Maxillofac Pathol. 2013; (17): 116–20.

Gauglitz, G.G., Korting, H.C., Pavicic, T., Ruzicka, T., Jeschke, M.G. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011; (17): 113–25.

Huang C, Murphy GF, Akaishi S. Keloids and hypertrophic scars: update and future directions. Plast Reconstr Surg Glob Open. 2013; 1:e25.

Friedman DW, Boyd CD, Mackenzie JW. Regulation of collagen gene expression in keloids and hypertrophic scars. J Surg Res. 1993; (55): 214–22.

Dong X, Zhang C, Ma S, Wen H. Mast cell chymase in keloid induces profibrotic response via transforming growth factor-beta1/Smad activation in keloid fibroblasts. Int J Clin Exp Pathol. 2014; (7): 3596–3607.

Unahabhokha T, Sucontphunt A, Nimmannit U, Chanvorachote P, Yongsanguanchai N, Pongrakhananon V. Molecular signalings in keloid disease and current therapeutic approaches from natural based compounds. Pharm Biol. 2015; (53): 457–63.

Song M, Liu Y. Analysis on polymorphism at -509 C/T site of TGF-β1 gene in patients with keloids. Zhonghua Shao Shang Za Zhi. 2014; (6): 482-6.

Kulawczuk P, Czapla N, Bińczak-Kuleta A, Safranow K, Jaworska-Kulawczuk A, Gajewska D, Agata K, Brykczyński M, Bargiel P. Genetic basis of keloid formation in wounds after cardiac surgery. Kardiochir Torakochirurgia Pol. 2014; 11(3): 273-7.

Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. Burns Trauma. 2016; 23;4(1): 30.

Eto H, Suga H, Aoi N, Kato H, Doi K, Kuno S, Tabata Y, Yoshimura K. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: upregulation of MMP-1 and HGF expression. Lab Invest. 2012; 92(2): 214-23.

Strand DW, Liang YY, Yang F, Barron DA, Ressler SJ, Schauer IG. TGF-beta induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways. American journal of clinical and experimental urology. 2014; 2(3): 239–48.

Sood RF, Arbabi S, Honari S, Gibran NS. Missense Variant in MAPK Inactivator PTPN5 Is Associated with Decreased Severity of Post-Burn Hypertrophic Scarring. PLoS One. 2016; 11(2): e0149206.

Hu ZC, Tang B, Guo D, Zhang J, Liang YY, Ma D, Zhu JY. Expression of insulin-like growth factor-1 receptor in keloid and hypertrophic scar. Clin Exp Dermatol. 2014; 39(7): 822-8.

Daian T, Ohtsuru A, Rogounovitch T, Ishihara H, Hirano A, Akiyama-Uchida Y, Saenko V, Fujii T, Yamashita S. Insulin-like growth factor-I enhances transforming growth factor-beta-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J Invest Dermatol. 2003; 120: 956–62.

Leake D, Doerr TD, Scott G. Expression of urokinase-type plasminogen activator and its receptor in keloids. Arch Otolaryngol Head Neck Surg. 2003; 129(12): 1334-8.

Li C, Zhu HY, Bai WD, Su LL, Liu JQ, Cai WX, Zhao B, Gao JX, Han SC, Li J, Hu DH. MiR-10a and miR-181c regulate collagen type I generation in hypertrophic scars by targeting PAI-1 and uPA. FEBS Lett. 2015; 589(3): 380-9.

Wang Y, Jianhong Long J, Wang X, Sun Y. Association of the Plasminogen Activator Inhibitor-1 (PAI-1) Gene -675 4G/5G and -844 A/G Promoter Polymorphism with Risk of Keloid in a Chinese Han Population. Med Sci Monit. 2014; (20): 2069–73.

Gruber BL, Kew RR, Jelaska A. Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis. J Immunol. 1997; (158): 2310–7.

Yu D, Shang Y, Luo S, et al. The TaqI gene polymorphisms of VDR and the circulating 1,25-dihydroxyvitamin D levels confer the risk for the keloid scarring in Chinese cohorts. Cell Physiol Biochem. 2013; (32): 39–45.

Hahn JM, Supp DM. Abnormal expression of the vitamin D receptor in keloid scars. Burns. 2017; 43(7): 1506-15.

Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol. 2016; (93): 186-99.

Sampsonas F, Kaparianos A, Lykouras D, Karkoulias K, Spiropoulos K. DNA sequence variations of metalloproteinases: their role in asthma and COPD. Postgrad Med J. 2007; (83): 244–50.

Han, J, Han, J, Yu, D. Association of ADAM33 gene polymorphisms with keloid scars in a northeastern Chinese population. Cell Physiol Biochem. 2014; 34(3): 981–7.

Hong SW, Moon JH, Kim JS, Shin JS, Jung KA, Lee WK, Jeong SY, Hwang JJ, Lee SJ, Suh YA, et al. p34 is a novel regulator of the oncogenic behavior of NEDD4-1 and PTEN. Cell Death Differ. 2014; (21): 146–60.

Sang PF, Wang H, Wang M, Hu C, Zhang JS, Li XJ, Zhu F. NEDD4-1 and PTEN expression in keloid scarring. Genet Mol Res. 2015; 28;14(4): 13467-75.

Liu Y, Wang X, Yang D, Xiao Z, Chen X. MicroRNA-21 affects proliferation and apoptosis by regulating expression of PTEN in human keloid fibroblasts. Plast Reconstr Surg. 2014; (134): 561–73.

Teofoli P, Barduagni S, Ribuffo M, Campanella A, De Pita O, Puddu P. Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J Dermatol Sci 1999; 22(1): 31–7.

Gao J, Chen Y, Liao N, Zhao W, Zeng W, Li Y, Wang S, Lu F. Relationship between p53 gene codon-72 polymorphisms and hypertrophic scar formation following caesarean section. Exp Ther Med 2014; (7): 1243-6.

De Felice B, Ciarmiello L F, Mondola P, et al. Differential p63 and p53 expression in human keloid fibroblasts and hypertrophic scar fibroblasts. DNA Cell Biol. 2007; (26): 541–7.

Totan S, Echo A, Yuksel E. Heat shock proteins modulate keloid formation. Eplasty. 2011; (11): 190–202.

Shin J.U., Lee W.J., Tran T.N., Jung I., Lee J.H. Hsp70 knockdown by siRNA decreased collagen production in keloid fibroblasts. Yonsei Med. J. 2015; (56): 1619–26.

Calve S, Isaac J, Gumucio JP, Mendias CL. Hyaluronic acid, HAS1, and HAS2 are significantly upregulated during muscle hypertrophy. American journal of physiology Cell physiology. 2012; 303(5): 577–88.

Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol. 2012; 4(3): 253–8.

Hellström, M., Engström-Laurent, A., Mörner, S., Johansson, B. Hyaluronan and collagen in human hypertrophic cardiomyopathy: a morphological analysis. Cardiol. Res. Pract. 2012; 545219.

Supp DM, Hahn JM, McFarland KL, Glaser K. Inhibition of hyaluronan synthase 2 reduces the abnormal migration rate of keloid keratinocytes. J Burn Care Res. 2014; 35(1): 84-92.

Wang Y, Lauer ME, Anand S, Mack JA, Maytin EV. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J Biol Chem. 2014; 289(46): 32253-65.



  • There are currently no refbacks.

Copyright (c) 2018 © The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

POL-index 2011 - 2014

BASE 2011 - 2014

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

Find a library that holds this journal:

Journal Language(s): English 

PBN Poland



Redaction, Publisher and Editorial Office

Instytut Kultury Fizycznej Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Institute of Physical Education Kazimierz Wielki University in Bydgoszcz, Poland 85-091 Bydgoszcz ul. Sportowa 2 Copyright by Instytut Kultury Fizycznej UKW w Bydgoszczy  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at

SIC Science citation index (calculated on the basis of TCI and Page Rank) 0

Russian Impact factor 0.16

Indexed in Index Copernicus Journals Master List.,p24782242,3.html

ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

The InfoBase Index IBI Factor for the year 2015 is 3.56 in InfoBase


Universal Impact Factor 1.78 for year 2012. (

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ)

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski