The importance of selected cell adhesion molecules in thyroid cancer

Magdalena Urbańczuk, Marcin Urbańczuk, Tomasz Tuzim, Katarzyna Schab, Kamila Bąk, Marcin Lewicki


Thyroid cancer is the most common malignant tumour of the endocrine system. It accounts for ca. 2% of all malignant tumours in the world, ranking it 16th in the overall classification. Its most common histology type is the papillary carcinoma originating from the epithelial tissue, which embraces approx. 50-80% of all cases.
The epithelial tissue cells in normal conditions are closely interconnected by means of intercellular interactions. The adhesion process is regulated by a series of molecules, called cell adhesion molecules (CAMs). The main representatives of this group, which are increasingly better known and characterised, include the following: E-cadherin, β-catenin, CD44 and CD31 glycoproteins. CAMs regulate the course of many processes, such as differentiation, migration and growth of cells, but they also participate in the transmission of signals to the inside of the cell. Changes in the expression of cell adhesion molecules affect the disruption of the adhesion process. The recent years have seen many scientific reports on the importance of CAMs in the course of neoplastic transformation. It has been proved that abnormalities of CAM expression in many malignant tumours, including the thyroid cancer, are closely related to the increased primary invasion, distant metastasis and worse prognosis. These observations suggest that individual cell adhesion molecules may be used in the future as markers in the diagnostic process of thyroid cancers.


cell adhesion molecules; thyroid cancer

Full Text:



Żerdziński M, Rychlik M, Partyka R. Rola selektyn w rozwoju odpowiedzi zapalnej. Journal of Laboratory Diagnostics. 2012; 48(3): 347-351.

Borowska K, Jędrych B, Czerny K, Zabielski S. Udział integryn w procesach fizjo- i patologicznych. Polski Merkuriusz Lekarski. 2006; 21: 362–366.

Fremont AL. Adhesion molecules. Journal of Clinical Pathology. 1998; 51: 175-184.

Skubitz AP. Adhesion molecules. Cancer Treatment and Research. 2002; 197: 305-329.

Coman DR. Decreased Mutual Adhesiveness, a Property of Cells from Squamous Cell Carcinomas. Cancer Research. 1944; 4: 625–629.

Cohen MB, Grieblin TL, Ahaghotu CA, Rokhlin OW, Ross JS. Cellular adhesion molecules in urologic malignancies. American Journal of Clinical Pathology. 1997; 107: 56.

Ohene-Abuakwa Y, Pignatelli M. Adhesion molecules as diagnostic tools in tumor pathology. International Journal of Surgical Pathology. 2000; 8: 191–200.

Bozzuto G, Ruggieri P, Molinari A. Molecular aspects of tumor cell migration and invasion. Annali dell'Istituto Superiore Di Sanità. 2010; 46(1): 66-80.

Okegawa T, Pong R, Li Y, Hsieh J. The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochimica Polonica. 2014; 51(2): 445-457.

Kwiatkowski P, Godlewski J, Śliwińska-Jewsiewicka A, Kmieć Z. Cząsteczki adhezyjne w procesie nowotworzenia i przerzutowania. Polish Annals of Medicine. 2009; 16(1): 128-137.

Bendas G, Borsig L. Cancer Cell Adhesion andMetastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins. Hindawi Publishing Corporation International Journal of Cell Biology. 2012; 10 pages (accessed: 2017.11.23).

Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 Lyon, France: International Agency for Research on Cancer; 2013

Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research. 2014; 74: 2913–2921.

Nollet F, Kools P, Van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. Journal of Molecular Biology. 2000; 299(3): 551-572.

Paredes J, Correia AL, Ribeiro AS, Albergaria A, Milanezi F, Schmitt FC. P-cadherin expression in breast cancer: a review. Breast Cancer Research. 2007; 9: 214.

Pötter E, Bergwitz C, Brabant G. The cadherin-catenin system: implications for growth and differentiation of endocrine tissues. Endocrine Reviews. 1999; 20: 207-239.

Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Reviews Molecular Cell Biology. 2005; 6(8): 622-634.

Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhoven A and et al. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics. 1995; 26: 281-289.

Husmark J, Heldin NE, Nilsson M. N-cadherin-mediated adhesion and aberrant catenin expression in anaplastic thyroid-carcinoma cell lines. International Journal of Cancer. 1999; 83: 692-699. (accessed: 2017.11.25).

Weis WI, Nelson WJ. Re-solving the Cadherin-Catenin-Actin Conundrum. Journal of Biological Chemistry. 2006; 281: 35593-35597.

Beavon IR. The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation. European Journal of Cancer. 2000; 36: 1607-1620.

Farahani E, Patra HK, Jangamreddy JR, Rashedi I, Kawalec M, Pariti RKR, et al. Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis. 2014; 35(4): 747–759.

Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH Jr, O'Toole ET, Winey M, et al. beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes and Development. 2008; 22: 91–105.

Conacci-Sorrell M, Zhurinsky J, Ben-Ze EV A. The cadherin-catenin adhesion system in signaling and cancer. Journal of Clinical Investigation. 2002; 109: 987-991.

Gaj Z, Lipińska A. Białka Regulujące Proces Adhezji Komórkowej W Nowotworach Tarczycy. Postępy Biologii Komórki. 2005; 32(2): 195-213.

Huber AH, Weis WI. The structure of the β-catenin/E-cadherin complex and molecular basis of diverse ligand recognition by β-catenin. Cell. 2001; 105(3): 391-402.

Zhurinsky J, Shtutman M, Ben-Ze'ev A. Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. Journal of Cell Science. 2000; 113: 3127-3139.

Behrens J, von KriesJP, Kühl M, Bruhn L, Wedlich D, Grosschedl R et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature. 1996; 382: 638-642.

Crawford HC, Fingleton BM, Rudolph-Owen LA, Heppner Goss KJ, Rubinfeld B, Polakis P. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene. 1999; 18: 2883-2891

van Es JH, Barker N, Clevers H. You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Current Opinion in Genetics and Development. 2003; 13: 28-33.

Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. American Journal of Pathology. 1999; 154: 515-523.

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. Identification of c-MYC as a target of the APC pathway. Science. 1998; 281(5382): 1509-1512.

Tetsu O, McCormick F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999; 398(6726): 422-426.

Zhang X, Gaspard JP, Chung DC. Regulaton of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Research. 2001; 61(16): 6050-6054.

Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E et al. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Research. 2003; 63(12): 3145-3153.

Bo Q, Bing-Rong L, Ya-Ju D, Jing Ch, Yan-Qiu Ch, Wei X et al. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncology Letters. 2014; 7(4): 1175–1178.

Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clinical and Experimental Metastasis. 2008; 25: 593–600.

Matsumura Y, Tarin D. Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet. 1992; 340: 1053-1058.

Ermak G, Gennings T, Robinson L, Ross JS, Figge J. Restricted patterns of CD44 variant exon expression in human papillary thyroid carcinoma. Cancer Research. 1996; 56: 1037-1042.

Kiziridou A, Pantidou A, Destouni Ch, Toliou T. Immunohistochemical expression of CD44

in thyroid gland lesions. Archive of Oncology. 2003; 11(1): 5-8.

Screaton GR, Bell MV, Jackson DG. The identification of a new alternative exon with highly restrected tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. The Journal of Biological Chemistry. 1993; 268: 12235-12238.

Gumina RJ, Kirschbaum NE, Rao PN, vanTuinen P, Newman PJ. The human PECAM1 gene maps to 17q23. Genomics. 1996; 34(2): 229–232.

Goldberger A, Middleton KA, Oliver JA, Paddock C, Yan HC, DeLisser HM et al. Biosynthesis and processing of the cell adhesion molecule PECAM-1 includes production of a soluble form. Journal of Biological Chemistry. 1994; 269:17183-17191.

Sheibani N, Frazier WA. Down-regulation of platelet endothelial cell adhesion molecule-1 results in thrombospondin-1 expression and concerted regulation of endothelial cell phenotype. Molecular Biology of the Cell. 1998; 9: 701–713.

Sun QH, DeLisser HM, Zukowski MM, Paddock C, Albelda SM, Newman PJ. Individually Distinct Ig Homology Domains in PECAM-1 Regulate Homophilic Binding and Modulate Receptor Affinity. Journal of Biological Chemistry. 1996; 271: 11090-11098.

Tachezy M, Reichelt U, Melenberg T, Gebauer F, Izbicki JR, Kaifi JT. Angiogenesis index CD105 (endoglin)/CD31 (PECAM-1) as a predictive factor for invasion and proliferation in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Histology and Histopathology. 2010; 25: 1239–1246.

Zocchi MR, Poggi A. PECAM-1, Apoptosis and CD34+ Precursors. Leukemia and Lymphoma. 2004; 45: 2205-2213.

Cheng Y, Meng Y, Liang Z, Yang C, Luo Y, Cui Q. Expression of EpCAM and E-cadherin in papillary thyroid carcinoma and its clinicopathologic significance. Zhonghua Bing Li Xue Za Zhi. 2015; 44(3): 189-194.

Ivanova K, Ananiev J, Aleksandrova E, Ignatova MM, Gulubova M. Expression of E-Cadherin/Beta-Catenin in Epithelial Carcinomas of the Thyroid Gland. Open Access Macedonian Journal of Medical Sciences. 2017; 5(2): 155-159.

Naito A, Iwase H, Kuzushima T, Nakamura T, Kobayashi S. Clinical significance of E-cadherin expression in thyroid neoplasms. Journal of Surgical Oncology. 2001; 76: 176–180.

Ceyran AB, Şenol S, Şimşek BÇ, Sağıroğlu J, Aydın A. Role of cd56 and e-cadherin expression in the differential diagnosis of papillary thyroid carcinoma and suspected follicular-patterned lesions of the thyroid: the prognostic importance of e-cadherin. International Journal of Clinical and Experimental Pathology. 2015; 8(4): 3670-3680.

Erdem H, Gündogdu C, Şipal S. Correlation of E-cadherin, VEGF, COX-2 expression to prognostic parameters in papillary thyroid carcinoma. Experimental and Molecular Pathology. 2011; 90(3): 312-317.

Sethi K, Sarkar S, Das S, Rajput S, Mazumder A, Roy B et al. Expressions of CK-19, NF-kappaB, E-cadherin, beta-catenin and EGFR as diagnostic and prognostic markers by immunohistochemical analysis in thyroid carcinoma. Journal of Experimental Therapeutics and Oncology. 2011; 9(3): 187-199.

Tao XF, Liu C, Bai Y, Chen X. Study of the correlation of papillary thyroid carcinoma's invasion with Ezrin, Moesin and E-Cadherin. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2011; 46(9): 761-763.

Ozolins A, Narbuts Z, Strumfa I, Volanska G, Stepanovs K, Gardovskis J. Immunohistochemical expression of HBME-1, E-cadherin, and CD56 in the differential diagnosis of thyroid nodules. Medicina (Kaunas). 2012; 48(10): 507-514.

Rezk S, Brynes RK, Nelson V, Thein M, Patwardhan N, Fischer A et al. beta-Catenin expression in thyroid follicular lesions: potential role in nuclear envelope changes in papillary carcinomas. Endocrine Pathology. 2004; 15(4): 329-337.

Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G. β-Catenin Dysregulation in Thyroid Neoplasms : Down-Regulation, Aberrant Nuclear Expression, and CTNNB1 Exon 3 Mutations Are Markers for Aggressive Tumor Phenotypes and Poor Prognosis. The American Journal of Pathology. 2001; 158(3): 987-996.

Figge J, del Rosario AD, Gerasimov G, Dedov I, Bronstein M, Troshina K et al. Preferential expression of the cell adhesion molecule CD44 in papillary thyroid carcinoma. Experimental and Molecular Pathology. 1994; 61(3): 203-211.

Durante C, Tallini G, Puxeddu E, Sponziello M, Moretti S, Ligorio C et al. BRAF V600E mutation and expression of proangiogenic molecular markers in papillary thyroid carcinomas. European Journal of Endocrinology. 2011; 165: 455–463.



  • There are currently no refbacks.

Copyright (c) 2018 © The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

POL-index 2011 - 2014

BASE 2011 - 2014

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

Find a library that holds this journal:

Journal Language(s): English 

PBN Poland



Redaction, Publisher and Editorial Office

Instytut Kultury Fizycznej Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Institute of Physical Education Kazimierz Wielki University in Bydgoszcz, Poland 85-091 Bydgoszcz ul. Sportowa 2 Copyright by Instytut Kultury Fizycznej UKW w Bydgoszczy  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at

SIC Science citation index (calculated on the basis of TCI and Page Rank) 0

Russian Impact factor 0.16

Indexed in Index Copernicus Journals Master List.,p24782242,3.html

ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

The InfoBase Index IBI Factor for the year 2015 is 3.56 in InfoBase


Universal Impact Factor 1.78 for year 2012. (

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ)

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski