Role of endoplasmic-reticulum-associated protein degradation pathway in the virus infection cycle

Tomasz Wandtke, Ewelina Wędrowska, Arkadiusz Goede, Paulina Owczarska, Elżbieta Piskorska, Piotr Kopiński


Introduction: The endoplasmic-reticulum-associated protein degradation (ERAD) pathway plays an important role in maintaining intracellular homeostasis and primarily affects proteins that have not achieved correct post-translational conformation. ERAD can be also exploited by viruses, usually in order  to avoid detection by the host's immune system. Depending on the type of virus, the character and manner of protein degradation may be different.

Aim of the study: The aim of this paper is to present the ERAD mechanism and its importance for the infection cycle of select viral particles. Gaining knowledge about this process can help to identify potentially effective new antiviral therapies.

Short description of state of knowledge: The ERAD mechanism and its utilization by: Poliomaviruses (BK and SV-40), Herpesviruses (Cytomegalovirus), Retroviruses (HIV-I) and Hepadnaviruses (HBV) are discussed in the paper.

Summation: The ERAD process in the viral infection cycle is extremely important. The possibility of using ERAD by differnet viruses should be further investigated. It could be also useful to exploit proteasome inhibitors as potential drugs in the fight against viral diseases.


ERAD, Herpesviruses, HBV, HIV-I, Poliomaviruses, endoplasmic reticulum

Full Text:

PDF (Polski)


English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013; 5(4): a013227

Jheng JR, Ho JY, Horng JT. ER stress, autophagy, and RNA viruses. Front Microbiol. 2014; 5: 388 - 411.

Berridge MJ. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium. 2002; 32(5-6):235-49.

Voeltz GK, Rolls MM, Rapoport TA. Structural organization of the endoplasmic reticulum." EMBO Rep 2002; 3(10): 944-950.

Tsai YC. Weissman AM. Ubiquitylation in ERAD: reversing to go forward? PLoS Biol. 2011; 9(3): e1001038.

Byun H, Gou Y, Zook A. et al. ERAD and how viruses exploit it. Front Microbiol. 2014; 5: 330-345.

Vashist S, Ng DT. Misfolded proteins are sorted by a sequential checkpoint mecha-nism of ER quality control. J Cell Biol. 2004; 165(1): 41-52.

Dupzyk A, Tsai B. How Polyomaviruses Exploit the ERAD Machinery to Cause Infection. Viruses. 2016; 8(9): 242-256.

Lee MJ, Lee JH, Rubinsztein DC. Tau degradation: The ubiquitin–proteasome system versus the autophagy-lysosome system. Prog Neurobiol. 2013; 105: 49-59.

Römisch K. Surfing the Sec61 channel: bidirectional protein translocation across the ER membrane. J Cell Sci. 1999; 112: 4185-4191.

Nakatsukasa K, Brodsky JL. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic. 2008; 9: 861-870.

Van den Boomen DJ, Lehner PJ. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I. Mol Immunol. 2015; 68(2): 106-111.

Słomińska-Wojewódzka M. Specyficzność substratowa białek opiekuńczych retikulum endoplazmatycznego EDEM1 i EDEM2 oraz ich rola w transporcie wewnątrzkomórkowym rycyny. Uniwersytet Gdański 2015.

Tsai B, Ye Y, Rapoport TA. (2002). Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol. 2002; 3(4): 246-255.

Frabutt DA, Zheng YH. Arms Race between Enveloped Viruses and the Host ERAD Machinery. Viruses. 2016; 8: 255-276.

Madsen L, Seegerb M, Semplec CA. et al. New ATPase regulators—p97 goes to the PUB." Int J Biochem Cell Biol. 2009; 41(12): 2380–2388.

Grzelakowska-Sztabert B. Zależna od ubikwityny degradacja białek. Kosmos. 2005; 54: 133-148.

Grzelakowska-Sztabert B. Zależna od ubikwityny degradacja białek. Kosmos. 2005; 54: 133-148.

Lemus LV, Goder V. Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells. 2014; 3: 824-847.

Sadowski M, Suryadinata R, Tan AR. et al. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life. 2012; 64(2): 136-142.

Pelzer C, Kassner I, Matentzoglu K. et al. UBE1L2, a novel E1 enzyme specific for ubiquitin." J Biol Chem. 2007; 282: 23010-23014.

Rogers TB, Inesi G, Wade R. et al. Use of Thapsigargin to Study Ca 2+ Homeo-stasis in Cardiac Cells. Bioscience 1995; 15: 341-349.

Nami B, Donmez H, Kocak N. Tunicamycin-induced endoplasmic reticulum stress reduces in vitro subpopulation and invasion of CD44+/CD24- phenotype breast cancer stem cells. Exp Toxicol Pathol. 2016; 68(7): 419– 426.

Turlej E. Współczesne metody detekcji cytokin – real time PCR, ELISPOT oraz technika wewnątrzkomórkowego barwienia cytokin. Postepy Hig Med Dosw. 2009; 63: 213-224.

Yoshida H. ER stress and diseases. FEBS J. 2007; 274: 630-658.

Sen D, Balakrishnan B, Jayandharan GR. Cellular unfolded protein response against viruses used in gene therapy. Front Microbiol. 2014; 5: 250-265.

Bartoszewski R, Brewer JW, Rab A et al. The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expres-sion that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem. 2011; 286: 41862-41870.

Ma Y, Hendershot LM. The Unfolding Tale of the Unfolded Protein Response. Cell. 2001; 107: 827-830.

Kuch M. Białko szoku cieplnego - czy mamy już do czynienia z nowym markerem niedokrwienia? Kardiol Pol. 2009; 67: 953-954.

Yang J, Nune M, Zong Y. et al. Close and Allosteric Opening of the Polypeptide-Binding Site in a Human Hsp70 Chaperone BiP. Structure. 2015; 23: 2191-2203.

Mayer M, Kies U, Kammermeier R. et al. BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J Biol Chem. 2000; 275: 29421-29425.

Wang J, Lee J, Liem D, Ping P. HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene. 2017; 618: 14-23.

Zimmermann R, Blatch GL. A novel twist to protein secretion in eukaryotes." Trends Parasitol. 2009; 25: 147-150.

Urano F, Bertolotti A, Ron D. IRE1 and efferent signaling from the endoplasmic reticulum. Cell. 2000; 113: 3697 -3702.

Jiang D, Niwa M, Koong AC. Targeting the IRE1alpha-XBP1 branch of the unfolded protein response in human diseases. Semin Cancer Biol. 2015; 33: 48-56.

Martino MB, Jones L, Brighton B. et al. The ER stress transducer IRE1beta is required for airway epithelial mucin production. Mucosal Immunol. 2013; 6: 639-654.

Kober L, Zehe Ch, Bode J. Development of a novel ER stress based selection system for the isolation of highly productive clones. Biotechnol Bioeng. 2012; 109 (10): 2599–2611.

Hollien, J. and Weissman, J.S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 313 (2006) 104-107.

Hollien, J., Lin, J.H., Li, H., Stevens, N., Walter, P. and Weissman, J.S. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 186 (2009) 323-331.

Harding HP, Zhang Y, Bertolotti A. Perk Is Essential for Translational Regulation and Cell Survival during the Unfolded Protein Response. Mol Cell. 2000; 5(5): 897 - 904.

Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005; 74: 739-789.

Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions." J Clin Invest. 2005; 115: 2656-2664.

Lin JH, Walter P, Yen TS. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008; 3: 399-425.

Adachi Y, Yamamoto K, Okada T et al. ATF6 Is a Transcription Factor Specializ-ing in the Regulation of Quality Control Proteins in the Endoplasmic Reticulum. Cell. 2008; 33: 75-89.

Su HL, Liao CL, Lin YL. Japanese Encephalitis Virus Infection Initiates Endoplasmic Reticulum Stress and an Unfolded Protein Response. J Virol. 2002; 76(9): 4162-4171.

Tardif KD, Mori K, Kaufman RJ. et al. Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. J Biol Chem. 2004; 279 (17): 17158-17164.

Galindo I, Hernaez B, Munoz-Moreno R. et al. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 2012; 3: 341-351.

Lee DY, Sugden B. The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood. 2008; 111: 2280-2289.

Burnett HF, Audas TE, Liang G. et al. Herpes simplex virus-1 disarms the unfolded protein response in the early stages of infection. Cell Stress Chaperones. 2012; 17(4): 473-483.

Rathore APS, Ng ML, Vasudevan SG. Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphoryla-tion. Virol J. 2013; 10: 36.

Stahl S, Burkhart JM, Hinte F. et al. Cytomegalovirus downregulates IRE1 to repress the unfolded protein response." PLoS Pathog. 2013; 9 (8): e1003544.

Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol. 2014; 5: 296-309.

Fay N, Pante N. Nuclear entry of DNA viruses. Front Microbiol. 2015; 6: 467-486.

Bennett SM, Jiang M, Imperiale MJ. Role of cell-type-specific endoplasmic reticulum-associated degradation in polyomavirus trafficking. J Virol. 2013; 87: 8843-8852.

Maliński M, Cichocki M. Inhibicja aktywności proteasomu jako nowa strategia w terapii i chemioprewencji nowotworów. Postepy Hig Med Dosw. 2013; 67: 90-106.

Poulin DL, DeCaprio JA. Is there a role for SV40 in human cancer? J Clin Oncol. 2006; 24: 4356-4365.

Konopska B, Gołąb K, Gburek J. Endocytoza niezależna od klatryny - rola w patomechanizmie chorób i aspekty farmaceutyczne. Postepy Hig Med Dosw. 2015; 69: 763-776.

Walczak, C. P. & Tsai, B. A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection. J. Virol. 85, 2386- 2396 (2011).

Magnuson, B. et al. ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding. Mol. Cell 20, 289-300 (2005).

Geiger, R. et al. BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat. Cell Biol. (2011).
94. Jiang, M., Abend, J. R., Tsai, B. & Imperiale, M. J. Early events during BK virus entry and disassembly. J. Virol. 83, 1350-1358 (2009).

Lee R, Nair M. Diagnosis and treatment of herpes simplex 1 virus infection in pregnancy. Obstet Med. 2017; 10(2): 58-60.

Loureiro J, Lilley BN, Spooner E. et al. Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature. 2006; 441: 894-897.

Gołąb J, Jakóbisiak M, Lasek W, Stokłosa T. Immunologia. Warszawa, Wydawnictwo Naukowe PWN 2012, wyd. 6.

Wildum S, Schindler M, Munch J. et al. Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol. 2006; 80: 8047-8059.

Morito D, Nagata K. Pathogenic Hijacking of ER-Associated Degradation: Is ERAD Flexible? Mol Cell. 2015; 59: 335-344.

Roy N, Pacini G, Berlioz-Torrent C. et al. Mechanisms underlying HIV-1 Vpu-mediated viral egress. Front Microbiol. 2014; 5: 177 - 184.

Gładysz A, Knysz B. Diagnostyka, profilaktyka, klinika i terapia zakażeń HIV/AIDS – współczesne możliwości i problemy. Wrocław, Wydawnictwo Continuo 2009.

Lazar C, Macovei A, Petrescu S. et al. Activation of ERAD pathway by human hepatitis B virus modulates viral and subviral particle production." PLoS One. 2012; 7: 34169-34179.

Virella G. Mikrobiologia i choroby zakaźne. Wrocław, Urban & Partner, 2000.

Liu Y, Testa JS, Philip R. A Ubiquitin Independent Degradation Pathway Utilized by a Hepatitis B Virus Envelope Protein to Limit Antigen Presentation. PLoS One. 2011; 6: 24477–24487.

Wang Q, Shinkre BA, Lee JG. et al. The ERAD inhibitor Eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS One. 2010; 5(11): e15479.

Shah JJ, Orlowski RZ. Proteasome inhibitors in the treatment of multiple myeloma. Leukemia, 2009; 23: 1964-1979.

Bonvini P, Zorzi E, Basso G. et al. Bortezomib-mediated 26S proteasome inhibi-tion causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia. 2007; 21: 838-842.



  • There are currently no refbacks.

Copyright (c) 2017 Tomasz Wandtke, Ewelina Wędrowska, Arkadiusz Goede, Paulina Owczarska, Elżbieta Piskorska, Piotr Kopiński

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Journal of Education, Health and Sport formerly Journal of Health Sciences

Declaration on the original version.

Editors indicates that the main version of the magazine is to issue a "electronic".

The journal has had 5 points in Ministry of Science and Higher Education parametric evaluation. § 8. 2) and § 12. 1. 2) 22.02.2019.

1223 Journal of Education, Health and Sport eISSN 2391-8306 7

ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

Archives 2011 - 2014

PBN 2011 - 2014

POL-index 2011 - 2014

BASE 2011 - 2014

Indexed in Bases, Bazy indeksacyjne: ERIH Plus, Worldcat, PBN/POL-Index, ICI Journals Master List, Directory of Open Access Journals (DOAJ), ZBD, Ulrich's periodicals, Google Scholar, Polska Bibliografia Lekarska

US NLM = 101679844

101679844 - NLM Catalog Result - NCBI

Find a library that holds this journal:

Journal Language(s): English 

PBN Poland



Redaction, Publisher and Editorial Office

Instytut Kultury Fizycznej Uniwersytet Kazimierza Wielkiego w Bydgoszczy, Institute of Physical Education Kazimierz Wielki University in Bydgoszcz, Poland 85-091 Bydgoszcz ul. Sportowa 2 Copyright by Instytut Kultury Fizycznej UKW w Bydgoszczy  Open Access ISSN 2391-8306 formerly ISSN: 1429-9623 / 2300-665X

The journal has been approved for inclusion in ERIH PLUS.

The ERIH PLUS listing of the journal is available at

SIC Science citation index (calculated on the basis of TCI and Page Rank) 0

Russian Impact factor 0.16

Indexed in Index Copernicus Journals Master List.,p24782242,3.html

ICV 2018 = 95.95 ICV 2017 = 91.30 ICV 2016 = 84.69 ICV 2015 = 93.34 ICV 2014 = 89.51 Standardized Value: 8.27 ICV 2013: 7.32 ICV 2012: 6.41 ICV 20115.48

The InfoBase Index IBI Factor for the year 2015 is 3.56 in InfoBase


Universal Impact Factor 1.78 for year 2012. (

Indexed in Polish Scholarly Bibliography (PBN) (PBN Polska Bibliografia Naukowa) (

is a portal of the Polish Ministry of Science and Higher Education, collecting information on publications of Polish scientists and on Polish and foreign scholarly journals. Polish Scholarly Bibliograhpy is a part of POL-on - System of Information on Higher Education. It is operated by the Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw.

Indexed in Russian Sciences Index Российский индекс научного цитирования (РИНЦ)

Indexed in Arianta Polish scientific and professional electronic journals Aneta Drabek i Arkadiusz Pulikowski